CANBIO2 – Actively Recruiting Projects

Please visit our LIH Jobs Portal to apply.

Veuillez noter que le contenu n’est disponible qu’en anglais.

Project 3: Supervisor Dr Clément Thomas (LIH, Department of Cancer Research, Luxembourg): Reciprocal effects of intrinsic tumour immune resistance and the tumour microenvironment.

The immune system is responsible for detecting and eliminating cancer cells. To kill their targets, cytotoxic lymphocytes use a specialised cell-to-cell interface, termed the immunological synapse (IS). Recently, our group established that cancer cells can escape from cytotoxic lymphocyte-mediated killing by polarizing their actin cytoskeleton to the IS and thereby altering IS morphology and activity. Actin-driven immune escape will be investigated in established 3D brain models including the immune compartment. Factors of the TE, such as hypoxia and ROS, will be monitored and their influence on actin dynamics in cancer cells and immune evasion will be determined.

Dr Clément Thomas’ research is centred on the functions and regulation of the actin cytoskeleton I in cancer cells, with a particular interest in actin-driven processes underlying tumour immune evasion and metastasis. In a recent study, his group established that a particular cytoskeletal structure that forms in cancer cells attacked by cytotoxic lymphocytes represents a major point of convergence for multiple immune evasion mechanisms and a promising therapeutic point of intervention to restore an effective anti-tumour immune response in patients.

Project 5: Supervisor Prof Anupam Sengupta (UL, Department of Physics and Materials Science, Luxembourg): Active Immuno-Mechanics in CRC environments (AIM-CRC).

The role of host feedback on the microbial community has been largely neglected until now. Our team has developed diverse workflows, which allow to track microbial behaviour using microfluidics, advanced imaging, in-house-robotics, mathematics and machine learning tools. Here we will use these tools and combine physics, mathematical sciences, and biology to understand how biophysical parameters (ECM, rigidity) within the TE regulate the dynamics of the cancer microbiome. The advantage of such models is that the cell-to-cell and cell-to-matrix interactions, which are essential for mimicking accurate physiological conditions and responses, are maintained.

Prof Anupam Sengupta is an FNR ATTRACT Fellow and Head of the Physics of Living Matter group at UL Department of Physics and Materials Science. After obtaining BS-MS degrees in Mechanical Engineering from the IIT Bombay (India), Anupam joined the Max Planck Institute (Göttingen, Germany). In 2013 he received a PhD in Physics for his work on liquid crystal microfluidics. Prof Sengupta was a Human Frontier Cross-Disciplinary Fellow (2014-2017), first at the MIT (USA) and then at ETH Zurich (Switzerland), working on the physical ecology of microbes. Since 2018, he directs a multi-disciplinary team in Luxembourg, combining material physics, microbiology, mathematical modelling and machine learning to understand microbial response and adaptation. He is a member of the UL Institute of Advanced Studies and serves as the Director of the undergraduate physics studies.

discover CANBIO2

Overview

Projects – WP1 – Novel Cancer Models

Projects – WP2 – Cancer Metabolism

Projects – WP3 – Novel Treatment Strategies

Training & Development

contact

For any question related to CANBIO2, please contact:

canbio.office@lih.lu

our open positions

We offer 15 fully funded PhD positions with a fixed-term work contract of up to 4 years.

We are seeking excellent and highly motivated candidates holding a Master’s degree in a field related to the topics of the DTU. Very good English language skills are required. The earliest start date will be September 2023.

Please visit our LIH Jobs Portal to apply.