Clinical Research Luxembourg Conference November 12th 2025

Title: Developing a Decision Tree Classifier Plug-in for Scenario Automation and Real-Time Feedback Improvement in High-Fidelity Medical Simulation

Nazanin Sheykhmohammadi, Gabriel Ny aintsoa Leclerc, Denis Zampunieris,

Affiliation: Faculty of Science, Technology and Medicine, University of Luxembourg, 2, place de l'Universit'e, Belval, L-4365, Esch-sur-Alzette, Luxembourg.

Simulation-based training is a valuable educational tool that benefits learners at all stages of medical education [1, 2]. Manikin-based simulation is a type of high-fidelity simulator that utilizes lifelike, computerized manikins designed to replicate human functions and realism [3]. High-fidelity manikins offer significant advantages, but educational institutions also face different challenges for the successful implementation and utilization of these modalities. Research recommends funding for the maintenance and upgrading of these systems, continuous research and evaluation of effectiveness, and identification of areas for improvement.[4]. In this study, we focus on improving real-time feedback provided by instructors during simulations. Using high-fidelity simulators while running manual scenarios (which educators currently use most often), instructors must constantly monitor learners and manually control manikin parameters, which can limit their ability to provide pedagogical feedback. Even for automated scenarios, an instructor is still needed during the development phase to design, implement, and validate the scenario properly. To address this, we proposed a Decision Tree Classifier (DTC) plug-in that connects sensor data from the manikin to the DTC engine, which determines appropriate actions based on predefined rules and updates the manikin's parameters through an interface emulator. This automation enables the scenario to progress automatically according to student performance and adhere to the defined rules based on medical scenarios from the European Resuscitation Council guidelines [5]. It frees instructors from technical concerns and allows them to focus on providing effective feedback. On the other hand, automating this process helps develop automated proactive feedback systems [6].

References

- 1. Herrera-Aliaga, E., Estrada, L.D.: Trends and innovations of simulation for twenty first century medical education. Frontiers in public health 10, 619769 (2022).
- 2. Ajemba, M.N., Ikwe, C., Iroanya, J.C.: Effectiveness of simulation-based training in medical education: assessing the impact of simulation-based training on clinical skills acquisition and retention: a systematic review. World Journal of Advanced Research and Reviews 21(1), 1833–1843 (2024).
- 3. D'ıaz, D.A., Anderson, M., Hill, P.P., Quelly, S.B., Clark, K., Lynn, M.: Comparison of clinical options: high-fidelity manikin-based and virtual simulation. Nurse educator 46(3), 149–153 (2021).
- 4. Elendu, C., Amaechi, D.C., Okatta, A.U., Amaechi, E.C., Elendu, T.C., Ezeh, C.P., Elendu, I.D.: The impact of simulation-based training in medical education: A review. Medicine (Baltimore) 103(27), 38813 (2024) https://doi.org/10.1097/MD.00000000000038813.
- 5. Lott, C., Truhla'ar, A., Alfonzo, A., Barelli, A., Gonz'alez-Salvado, V., Hinkelbein, J., Nolan, J.P., Paal, P., Perkins, G.D., Thies, K.-C., Yeung, J., Zideman, D.A., Soar, J., ERC Special Circumstances Writing Group Collaborators: European resuscitation council guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 161, 152–219 (2021) https://doi.org/10.1016/j.resuscitation.2021.02.011.
- 6. Sheykhmohammadi, N., Zampunieris, D., Reis, S., Gr'evisse, C.: Using proactive computing for real-time feedback in high-fidelity medical simulation. In: 2025 IEEE 38th International Symposium on Computer-Based Medical Systems (CBMS), pp. 475–479 (2025). https://doi.org/10.1109/CBMS65348.2025.00100

Clinical Research Luxembourg Conference November 12th 2025

BIOSKETCH

NAME, SURNAME: Nazanin SHEYKHMOHAMMADI

TITLE: Doctoral Researcher

ORCID ID: 0000-0002-0241-4034

CURRENT AND PAST POSITIONS: Doctoral Researcher in Informatics at the University of Luxembourg (July 2022 – Present). Research focuses on applying proactive computing paradigms to e-training in medicine using advanced simulators.

Previously, held multiple roles in Iran:

- Health Informatics Specialist, ICT and Statistical Data Management Department, Alborz University of Medical Sciences, Karaj (2019 2022)
- Quality Improvement and HIS Data Quality Control Expert, Imam Ali Hospital, Karaj (2018 2019)
- Health Information Technology Expert, Imam Khomeini Hospital, Urmia (2017 2018)
- Health Information Technology Expert, Masih Daneshvari Hospital, Tehran (2016 2017).

EDUCATION:

- Ph.D. (Doctoral Researcher), Informatics University of Luxembourg, Luxembourg (2022 Present)
- M.Sc., Medical Informatics Shahid Beheshti University of Medical Sciences, Tehran, Iran (2014 2017) Thesis: Providing a conceptual object-oriented model for a hospital-based colorectal cancer registry
- B.Sc., Health Information Technology Shahid Beheshti University of Medical Sciences, Tehran, Iran (2010 2014)

AWARDS AND HONORS:

- **See Student Paper Award, IEEE 18th International Conference on Application of ICT (2024)**
- Shortlisted for Best Paper Award, CSEDU International Conference (2024)
- Ranked 23rd among 1800+ participants in the Iranian National MSc Entrance Exam (2014)
- Member, Statistical Data Management of COVID-19 Joint Committee, Tehran & Karaj (2020 2021)
- Coordinator, E-Government and Process Intelligence Committee, Alborz University of Medical Sciences (2019 2022)

OTHER RELEVANT PROFESSIONAL ACTIVITIES AND ACCOMPLISHMENTS:

- Led and contributed to national E-Health implementation projects, including electronic health record systems at Alborz University.
- Conducted research and published peer-reviewed papers on medical simulation, digital health, and cancer registry systems.
- Experienced in workflow analysis, health data quality assurance, and interdisciplinary research collaboration.
- Skilled in Microsoft Visio, UML, project management, leadership, and digital learning innovation.