Analysis of correlation-based biomolecular networks from different omics data by fitting stochastic block models [version 1; peer review: awaiting peer review].

  • Bioinformatics and Modelling
April 14, 2019 By:
  • Baum K
  • Rajapakse J
  • Azuaje F.

Background: Biological entities such as genes, promoters, mRNA, metabolites or proteins do not act alone, but in concert in their network context.
Modules, i.e., groups of nodes with similar topological properties in these networks characterize important biological functions of the underlying biomolecular system. Edges in such molecular networks represent regulatory and physical interactions, and comparing them between conditions provides valuable information on differential molecular mechanisms. However, biological data is inherently noisy and network reduction techniques can propagate errors particularly to the level of edges. We aim to improve the analysis of networks of biological molecules by deriving modules together with edge relevance estimations that are based on global network characteristics.
Methods: We propose to fit the networks to stochastic block models (SBM), a method that has not yet been investigated for the analysis of biomolecular networks. This procedure both delivers modules of the networks and enables the derivation of edge confidence scores. We apply it to correlation-based networks of breast cancer data originating from high-throughput measurements of diverse molecular layers such as transcriptomics, proteomics, and metabolomics. The networks were reduced by thresholding for correlation significance or by requirements on scale-freeness. Results and discussion: We find that the networks are best represented by the hierarchical version of the SBM, and many of the predicted blocks have a biological meaning according to functional annotation. The edge confidence scores are overall in concordance with the biological evidence given by the measurements. As they are based on global network connectivity characteristics and potential hierarchies within the biomolecular networks are taken into account, they could be used as additional, integrated features in network-based data comparisons. Their tight relationship to edge existence probabilities can be exploited to predict missing or spurious edges in order to improve the network representation of the underlying biological system.

2019 Apr. F1000Research.8(465).
Other information